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Abstract-An algorithm was developed and tested for the ability to 
differentiate between the spatial distribution of large arrays of acute 
and normal recordings of surface electromyographic (EMG) data 
from subjects with and without low back pain (LBP).  The surface 
EMG data from 62 channels were statistically analyzed and the 
spatial distribution of the root mean square (RMS) values were used 
in a multivariate quadratic discriminant model to classify the 
healthy and acute LBP subjects.  The surface EMG distribution 
from the low back of 161 healthy and 44 acute LBP subjects were 
collected in three minimum stress postural positions including 
standing, 20 degrees of lumbar flexion and standing with arms 
extended forward holding 1.36 kg (3 lbs.) of weight in each hand.  
The best results obtained from the 'flexion' group of experiments 
correctly reclassified 95.5% (42 of 44) of the acute subjects and 
99.4% (160 of 161) of the healthy.  The success rate of this 
reclassification were found to be superior to reported patient 
classifications based on smaller set of electrode pairs using fewer 
subjects.  The results indicated a potential of the model for clinical 
patient classification. 
Keywords - Myoelectric potential distribution, Low back pain, 
Surface electrodes, Patient classification 
 

I.  INTRODUCTION 
 

Low back pain (LBP) is a major economic health care problem 
in the United States.  The general annual prevalence of LBP is 15 
to 20 thousand and a lifetime prevalence of approximately 80 
thousand per 100 thousand people in the population [1].  Back 
problems are the most frequent cause of limitation of activity in 
people less than 45 years of age [2] and is the most expensive 
industrial injury, causing up to 25% of all workers' compensation 
claims.  Lost time from work in addition to disability payments 
and medical costs related to LBP have been estimated to cost 
more than $50 billion annually [3].  Using currently available 
techniques in as many as 80% of patients with acute LBP, the 
precise anatomic source of the pain cannot be localized [4]. 

Recently, technical advances in microelectronics and computer 
science have improved signal processing, sensitivity and 
simultaneous multiple site data collection methods essential to 
the clinical efficacy of surface EMG.  In fact, the position of the 
American association of electrodiagnostic medicine in 1996 was 
anticipating surface EMG improvements with specialized 
computer signal processing to "prove clinically useful in the 
noninvasive monitoring of the progression of a nerve or muscle 
disorder."[5] taking advantage of the new instruments, recent 
activity in surface EMG research has been focused on the 
parameters to characterize the muscular component of low back 
pain.  It was found that the left to right side imbalance of the 
median frequency of surface EMG reflects changes in the 
activation of lumbar muscles associated with the presence of 
pain.  Furthermore, in chronic LBP the changes may reflect long 
term effects of subtle postural adjustments resulting from a 
strategy to avoid sensation of pain [6].  In another study 

multivariate discriminant analysis of mean frequency parameters 
from six channels of surface EMG signals were used to develop 
an algorithm for classifying persons into LBP and control groups.  
The study required large force exertions with low back muscles 
up to maximum voluntary contractions.  Subjects with LBP were 
identified with 92% accuracy and controls with an accuracy of 
83% [7].  The analytical power of multichannel surface EMG 
technology has been further increased by an instrument 
developed by the Paraspinal Diagnostic Corporation (PDC) of 
Columbus Ohio.  This instrument, referred to as the 
Computerized Electromyographic Reconstruction of Spinal 
Regions (CERSR) employs 63 electrodes in a 7 by 9 array of 62 
referenced to one common.   

The electrode array captures the surface distribution of the 
myoelectric potentials and through analog to digital conversion a 
computerized reconstruction of the myoelectric activity of the 
underlying muscles is accomplished.  From each electrode 
output, the root mean square or RMS amplitude of the surface 
EMG is calculated and stored for further analysis and produce a 
colorized visual display of the potentials from the paraspinal and 
other muscles of the low back. 

Although the 62 channel signal display provides an impressive 
visual discrimination between the normal and abnormal EMG 
activity patterns, further quantification of the RMS data is needed 
for precise classification of signal distributions. 

The purpose of this study was to develop a classification for 
differentiating between the 62 channels of surface EMG data 
obtained with the CERSR system from patients with acute LBP 
and subjects without LBP.  The focus was to demonstrate the 
feasibility of constructing an algorithm which can differentiate 
between spatial distribution of RMS values obtained from the 
low back region of the subjects. 

Specifically, the surface EMG data, obtained during the 
performance of three different tasks, were analyzed 
independently to determine which task produced the best 
information to differentiate between healthy and acute LBP 
subjects.   

 
II.  METHODOLOGY 

 
1) Subjects: A retrospective analytical study was 

conducted on surface EMG data collected by the CERSR system 
from healthy subjects and patients with LBP in two different 
settings.  The classification algorithm was designed  and trained 
to differentiate between normal and abnormal surface EMG 
patterns.  A combined set of EMG data was obtained form 
volunteer workers employed at the offices of the Nationwide 
Insurance Company (healthy group) and the patient populations 
of the occupational health clinics affiliated with the Ohio State 
University Medical School (acute LBP group).  Surface EMG 
data from 62 channels and health status reports were obtained 
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from subjects using identical protocol at each site.   
Volunteers and patients were asked to complete a questionaire 

requesting demographic and medical history information 
including the visual analog pain score.  Excluded from the study 
were individuals with a history of spine surgery, radiculopathy, 
serious back conditions of tumor, infection or herniated disk, 
diabetes and thyroid disorders.  Volunteer workers at the 
Nationwide Insurance Co., who reported experiencing any LBP 
in the past 12 months, were excluded.  Also excluded were 
patients from the Ohio State University group who reported 
disabling low back pain, which occurred between 6 weeks and 6 
months prior to beginning the study.  Included in the study were 
both male and female individuals of any race 18 years or older 
without LBP and with either work related or non-work related 
acute LBP of less than 6 weeks duration.  All subjects signed the 
informed consent document before entering the study.  
Participation by the acute LBP patients required the approval of 
their primary care physician to assure no treatment interference 
from the research protocol.  Surface EMG and demographic 
information including age, gender, body weight and height was 
collected form 205 participants at the two locations.  At the 
Nationwide Insurance Co., 161 working volunteers were tested.  
Forty-four acute LBP patients were similarly tested at Ohio State 
University.  Further data was also collected from the patients 
concerning their date and mechanism of injury, work status and 
the results of their physical examination.  Subjects in the acute 
LBP groups were able to perform every day tasks with pain, 
while receiving medical care as deemed appropriate by the 
treating physician. 

2)  Instrumentation:  The CERSR instrument is a Windows 
based NT operating system with a Pentium II central processing 
unit containing a 64 channel analog to digital converter.  The 
surface myoelectric potentials are collected form a fixed 7 
columns by 9 rows array of 63 pre-gelled, silver-silver chloride 
electrodes referred to one common electrode located in the center 
of the array.  The 1.0 cm diameter electrodes are spaced 3.0 cm 
apart center to center and attached to a thin plastic flexible film 
pre-coated with a thin skin contact adhesive.  The skin adhesive 
and the film is to hold the electrode array in place on the subjects 
low back region during the EMG data collection.  The array of 
discrete electrodes covered a 19.0 cm by 24.5 cm skin area. 

Each electrode in the array is sampled 2000 times per second 
at a frequency bandwidth of interest between 30 to 150 Hz, with 
a differential mode gain of 88.0 + 0.5% for each channel.  The 
common mode rejection ratio for any channel with respect to the 
reference electrode is 80 dB or greater at 60 Hz.  Input 
impedance of any channel is greater than 10,000 megaohms in 
parallel with 20pF and the output impedance of each channel is 
less than 200 ohms.   

With each electrode input connected to ground the total self 
generated voltage noise, referred to the input, does not exceed 
0.05 mV RMS on any channel.  Cross talk between neighboring 
channels is less than 1%. 

Potentials from the muscles of the low back were recorded in 
real time.  The RMS voltage of the EMG signal was calculated 
for 1 second duration for each adjacent electrode referenced to 
the common.  The color coded RMS values of EMG signals are 
displayed on the computer monitor, superimposed on a drawing 

of the subject's skeletal anatomy.  The EMG image display 
contains 63 dots, one for each electrode in the array and 206 
nearest neighbor electrode pair combinations represented by 
colored bars connecting the adjacent electrodes on the image.  
The color of each bar is proportional to the RMS value between 
adjacent electrodes.  Using a 264 color spectrum, the electrode 
pair with the highest RMS value is indicated in red and the 
electrode pair with the lowest RMS value in blue.  The remaining 
electrode pairs are assigned colors in between red and blue.  The 
resulting RMS voltage gradient display is an image representing 
the distribution of myoelectric activity of the muscular anatomy 
adjacent to the electrode array. 

3)  Data collection:  Sequential recording or scans of surface 
EMG data was collected form 62 channels from the low back 
regions of all participating subjects, using a standardized 
protocol during each of three postural tasks.  The three tasks, 
representing increasing levels of minimal low back stress were: 
standing upright, standing with 20 degrees of lumbar flexion and 
standing upright with arms extended forward holding a 1.36 kg 
(3 lbs.) weight in each hand.  In this standardized protocol, which 
all subjects in both groups completed, the subjects were standing 
as follows:  in the upright standing position, subjects  stood at 
ease, feet shoulder width apart, arms at the sides.  In the flexed 
position, subjects stood as before with 20 degrees of anterior 
trunk flexion as measured with a goniometer.  The goniometer's 
arms were parallel with the subject's femur and the mid-axillary 
line.  In the weight holding position, subjects again stood as 
before, while holding a 1.36 kg (3 lbs.) weight in each hand, 
directly in front of the body at shoulder height, with the elbows 
extended, wrist rotation in the neutral position and fists closed 
around the handle of the weights. 

The subjects were allowed to wear shoes if the heels were less 
than 1 inch in height.  Women in high heels were asked to 
remove their shoes. 

Three repeated scans of the EMG electrode array were 
performed at each postural position.  The scans were completed 
and the data was stored digitally for analysis and visual display.  
Each scan was reviewed for diagnostic quality by inspecting the 
display for ambiant noise (at 60 Hz) generated "super 
physiologic" power value.  This was confirmed by observing the 
frequency distribution on the fast Fourier transform of the 
suspect channel with the 60 Hz software filters turned off.  If the 
60 Hz peak exceeded 100 mV RMS on a suspect electrode than 
the electrode was reapplied, the scan was eliminated from the 
series and another scan was collected.  For data analysis a single 
scan from each postural task was used for each subject.  The scan 
was chosen by the technician, based on the consistency and 
quality of recording. 

4)  Placement of electrodes:  Participants were asked to 
uncover their low back for the placement of the 7 by 9 electrode 
array supplied with conductive paste and fastened to a non-
allergenic thin plastic sheet.  The superior portion's of the iliac 
crest of the participants were palpated bilaterally and the 
separation between them measured.  The skin was marked at half 
the distance between them and from this mark the distance was 
also measured vertically to the spinous process of the T-7 
vertebra.  The center or reference electrode in the array was then 
positioned 6 cm above the mark and the electrode array was 
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spread  smoothly over the low back region of the subject and 
applied  at once to be held in place by the skin adhesive.  The 
measured distances in centimeters were entered into the software 
which scaled the electrode array and EMG output image to 
correspond to the subjects size and anatomy. 

5)  Classification model:  The model was developed based on 
the demographic and surface EMG data obtained from healthy 
volunteers and patients with acute LBP and their self determined 
categorization of health.  The model was used to classify the 
subjects into healthy or acute LBP groups and the results 
contrasted with their self determined categorization.  It is 
acknowledged that this methodology is assuming that the self 
categorization is the 'gold standard' and the uncertainty and 
limitations associated with this assumption is fully recognized. 

The algorithm of the classification model was based upon a 
quadratic discriminant function.  This function calculated the n-
dimensional mean or centroid of each group and thus separated 
the n-dimensional space into two regions.  The classification of 
new subjects was determined by their nearness to the centroid of 
the respective group [8].  The model assumes a multi variate 
Gaussian distribution for the chosen predictors and plots of the 
data support this assumption.  Furthermore, the model allowed us 
to calculate the posterior probability of membership in each of 
the two groups and this may be considered as a surrogate for 
"low back pain intensity" on a scale of 0-1.  For example, a 
probability of 0.9 of belonging to the acute group indicates a high 
level of pain whereas a 0.1 probability of membership in acute 
group indicates minimal to no pain.  The specific details of the 
algorithm are proprietary and are not presented here. 

 
III.  RESULTS 

 
The demographic characteristics of the study population are 

shown on Table I. 
Summary statistics were computed for the 62 pairs of 

electrodes along with body mass index, body weight and height 
(65 variables total) separately for the three postural tasks.  Data 
from the healthy and the acute groups were compared by 
performing t tests for all 65 variables.  Variables with p values 
less than 0.1 (based upon t test) were chosen as potential 
predictors to discriminate between the two groups. This 
relatively high level of significance was chosen to guard against 
the possibility of excluding the marginally significant predictor 
variables. 

In terms of body weight, height and body mass (BMI), 
significant differences were found between the acute LBP and  
 

TABLE I 
DEMOGRAPHIC COMPARISON OF ACUTE LBP AND HEALTHY SUBJECTS  

[Mean (SD)] 
Groups N Age Weight Height BMI 
  years kg cm kg/m2 
FEMALE      
Acute LBP 18 35.2 (9.9) 85.7 (23.0) 168.2 (9.1) 30.1 (6.5) 
Healthy 86 39.5 (11.5) 71.0 (16.1) 165.0 (6.6) 26.2 (6.0) 
F value  NS 0.0333 NS NS 
MALE      
Acute LBP 26 35.0 (8.0) 90.6 (19.8) 176.1 (7.8) 29.2 (5.6) 
Healthy 75 39.1 (9.4) 86.6 (13.6) 180.0 (7.3) 26.8 (3.7) 
F value  NS 0.0143 NS 0.0065 

healthy subjects.  The body weight of female subjects and the 
body weight and BMI of male subjects were significant 
predictors to differentiate between the acute and healthy groups 
(p<0.05) in the upright standing and in the flexion tasks.  For 
reasons of incomplete data sets four subjects had to be excluded 
from the weight holding group.  Two females and one male in 
the acute LBP group and one male in the healthy group were not 
included in the data analysis. 

The number of significantly different (p<0.1) variables found 
in each postural task is shown in Table II. 

To accomplish anatomic symmetry between the left and right 
side low back muscles, additional electrode variables were added 
to the model as needed.  In the 'Upright' group none, in the 
'Flexion' group 3 and in the 'Weight Holding' group 5 additional 
electrode variables were included as indicated in Table II.  Each 
added electrode location in the array is indicated by row and 
column number respectively. 

Using the model we re-classified the subjects into the acute 
and healthy groups and calculated the posterior probability of the 
subject belonging to each group.  The results of the analytical re-
classifications are shown on Table III. 

The values in parenthesis are the mean posterior probabilities 
of belonging to the respective groups.  These probabilities are 
referred to as posterior since they are calculated from the 
observed data but here after will be called simply probability.  
Conceptually the posterior probability can be viewed as an index 
of LBP severity.  The visual analog pain score available from the 
patients with acute LBP was not used in the analysis during this 
study.  The focus was primarily on the development of the 
classification model.  In a future study the correlation of the pain 
score with the probability of belonging to a subject group will be 
addressed. 
These preliminary results indicated the flexion data to be most 
promising in terms of classifying subjects into acute LBP or 
healthy groups.  The holding and upright data sets also produced 
reasonably good results but had difficulties distinguishing 
between healthy and acute.  This may be due to the "truth" of 
some healthy or the absence of LBP from acute subjects at the 
time of the surface EMG data was collected.  The best results 
obtained from the 'Flexion' group of experiments correctly 
reclassified 95.5% (42/44) of the acute subjects and 99.4% 
(160/161) of the healthy ones.  It should be noted, however, that 
the algorithm is reclassifying the same data upon which it was 
trained and ideally an external validation data set should be used.  
Furthermore, a high probability associated with an incorrect 
classification merits further investigation of the data or the 
patient's self categorization. 

 
 

TABLE II 
VARIABLES USED FOR THE QUADRATIC DISCRIMINANT FUNCTION ANALYSIS 

 Significantly different 
(p<0.1) variables 

Electrodes added to gain 
left to right symmetry 

Upright 9 electrodes 
weight, BMI 

None 

Flexion 27 electrodes 
weight, BMI 

3 electrodes 
[v43, v61, v81] 

Holding 12 electrodes 
weight, BMI 

5 electrodes 
[v46, v56, v64, v73, v81] 
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 TABLE III 
RE-CLASSIFICATION RESULTS OF ACUTE LBP AND HEALTHY GROUP OF SUBJECTS 
BASED ON MULTICHANNEL SURFACE EMG DATA FROM 3 POSTURAL CONDITION 

From Status To Status (%subjects classified) 
 Upright Flexion Holding 
 Acute Healthy Acute Healthy Acute Healthy 
Acute 22.7 

(0.980)* 
77.3 

(0.980) 
95.5 

(0.945) 
4.5 

(0.596) 
68.3 

(0.944) 
31.7 

(0.833) 
Healthy 0.6 

(0.780) 
99.4 

(0.990) 
0.6 

(0.691) 
99.4 

(0.997) 
4.4 

(0.695) 
95.6 

(0.967) 
* In parenthesis are the mean probabilities of belonging to the re-classified group. 

 
IV.  DISCUSSION 

 
Quadratic discriminant functional analysis was used to 

develop an algorithm, applied to surface EMG data for 
classifying subjects into low back pain and healthy status.  
Surface myoelectric potential distribution from subjects standing 
with flexion was found to be most promising to classify the 
subjects into healthy and acute low back pain status.  The results 
show 95.5% of the acute and 99.4% of the healthy subjects 
standing flexed were classified into their respective classes at the 
probability (calculated from the existing data) of p=0.945 and 
p=0.997 respectively.  These results indicate significant potential 
for this model to be used for patient classification.  The success 
rate of reclassification were found to be superior to the published 
literature for the classification of LBP patients.  

Data from the acute and healthy subjects standing upright and 
holding weight also produced reasonable results but had more 
difficulty to distinguish between healthy and acute LBP status.  
There were 99.4% of the healthy subjects classified to be healthy 
using the upright data and 95.6% of the healthy subjects were 
classified to be healthy using the weight holding data.  Of the 
acute subjects, 77.3% were classified healthy and only 22.7% 
acute using the upright data.  From the acute group 68.3% was 
classified acute (p=0.944) using the weight holding data.  The 
remaining 31.7% however were classified incorrectly healthy but 
at an also high probability of p=0.838.  The high probability of 
incorrect assignment merit further investigation of the data or the 
clinical classification.  The "truth" of some of the acute data or 
the absence of low back pain in the healthy subjects need to be 
verified at the time of collection of the surface myoelectric 
potentials. 

V.  CONCLUSION 
 
The results of this work indicated a significant potential for 

this technique and methodology since the success rates of 
reclassification are superior to published literature on the 
classification of LBP patients.  However, there is also a need to 
collect and analyze more data using the CERSR instrumentation 

and further test the existing classifying algorithm with well 
defined clinically confirmed LBP status.  The data collection 
protocol should be selected to assure reliability and repeatability, 
confirm the state of pathology in the patients and use constant 
time periods and exact treatment protocols.  The refinement will 
be fundamental to the classification methodology leading to 
acceptance and use in regular clinical practice. 
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